КЛЕТОЧНЫЕ ФАКТОРЫ ИММУНИТЕТА В ДИАГНОСТИКЕ РЕВМАТИЧЕСКИХ БОЛЕЗНЕЙ

Под редакцией члена-корреспондента АМН СССР В. П. Лозового

Новосибирск - 1981
ЦИРКАДНАЯ ХАРАКТЕРИСТИКА СУБПОПУЛЯЦИЯ ЛИМФОЦИТОВ У БОЛЬНЫХ РЕВМАТОИДНЫМ АРТРИТОМ

В.С.Туаев, В.С.Кожевников, О.Т.Кудаева

По современным представлениям срыв аутотолерантности и возникновение аутоиммунного конфликта происходит из-за нарушений в взаимодействии иммунокомпетентных клеток и механизмов регуляции их активности. Важным фактором в иммунной системе, обеспечивающим эффекторные механизмы, является процесс миграции и перераспределения иммунокомпетентных клеток. Отмечены широкие возможности модуляции функций в иммунной системе, ее относительная автономность, механизмы компенсаций к изменяющемуся гормональному режиму (В.П.Лозовой и соавт., 1979). Выбор нами биоритмологического метода исследований заключается в том, что представляется возможность проследить динамику взаимосвязи иммунной системы с интегрирующими факторами целого организма, из которого определяющим является эндокринная система, и при этом исследовать последовательность включения в миграцию различных
иммунокитов. Такие неспецифические воздействия как рапогризелечение, широко используемое в терапии ревматоидного артрита, являются аналогами неспецифических изменений внешних параметров. Это может служить естественной моделью изучения адаптивных саногенетических реакций иммунной системы человека.

Основной целью исследования являлась характеристика суточных ритмов циркуляции субпопуляций лимфоцитов клеток периферической крови, их функциональная активность и чувствительность к воздействию гидрокортизона и тимозина.

В один сезон (весна) обследованы больные ревматоидным артритом (РА) с активностью процесса I-II степени в фазе пролиферативно-эксудативного воспаления: I-до начала рапогризетерапии, II - в процессе рапогризетерапии, в период "бальнеореакции", характеризующейся особенностями ряда клинико-лабораторных показателей. На первом этапе обследование начиналось на 3-й день адаптации к режиму. Медикаментозное лечение исключалось. Забор крови из локтевой вены проводился в течение суток через 6 часов (12,18,24, 6). Лимфоциты выделялись в градиенте фиколл-верографин плотностью 1,077 (В.Б.Хейфец, В.А.Абалкин, 1973) и определялись в принадлежности к T- и B-классам в тестах розеткообразования: E-активные (Еа), EAC; E-активированные (Еh-I); E-стабильные (Ес); E-авторозеткообразование (Еh); E-восстановленные (Ев); Еа. Спонтанная ВТЛ, спонтанная и индуцированная T-супрессорная активность определялась по включению 3Н-тимидина. Определялась чувствительность лимфоцитов T- и B-классов к воздействию IV фракции тимусного экстракта телят в дозе 300 некг/мл in vitro, а также к действию физиологических концентраций гидрокортизона ("Sigma" С.В.) в дозе 0,5 некг/мл с добавлением сыворотки человека IV группы. Инкубация проводилась в течение I часа. Оценивалась активность рецепторов лимфоцитов к эритроцитам барана (Yu D.T.H. et al., 1977). К средизависимым относились лимфоциты, прикрепившие 3-10, а к высокоавтосимным - более 10 эритроцитов. Лимфоциты, которые не выделялись в тестах Е- и EAC-РОК, относились к так называемым нулевым клеткам.

Полученные данные, представленные в табл. I-7, показывают, что у больных ревматоидным артритом до начала бальнеотерапии временная организация циркулирующих субпопуляций лимфоцитов отличается от данных у здоровых лиц (В.П.Лошовой и соавт., 1979) и характеризуется низким уровнем и слабо выраженным суточным
Таблица I

Суточная динамика относительного содержания субпопуляций лимфоцитов у больных RA на I этапе обследования

<table>
<thead>
<tr>
<th>Тип клеток</th>
<th>Время суток, ч</th>
<th>Достоверность различий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td>50,3 ± 2,46</td>
<td>44,1 ± 2,99</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
<td>(29)</td>
</tr>
<tr>
<td>Ea</td>
<td>34,2 ± 2,20</td>
<td>30,3 ± 2,93</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
<td>(29)</td>
</tr>
<tr>
<td>Eb</td>
<td>40,3 ± 2,54</td>
<td>30,1 ± 2,12</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(17)</td>
</tr>
<tr>
<td>Ec</td>
<td>17,9 ± 3,81</td>
<td>9,7 ± 2,65</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Eh -I</td>
<td>6,9 ± 1,43</td>
<td>5,7 ± 1,12</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>Eh</td>
<td>0,6 ± 0,28</td>
<td>1,2 ± 0,30</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>(8)</td>
</tr>
<tr>
<td>EAC</td>
<td>18,5 ± 1,38</td>
<td>16,5 ± 0,85</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
<td>(29)</td>
</tr>
<tr>
<td>EA</td>
<td>12,1 ± 1,10</td>
<td>11,6 ± 1,11</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(17)</td>
</tr>
<tr>
<td>"O"</td>
<td>31,2 ± 3,37</td>
<td>3,97 ± 3,13</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
<td>(29)</td>
</tr>
</tbody>
</table>

Примечание: xx – отличие отсутствует (по Стьюденту).

ритмом, имеющим сдвиг на утренние часы. Обращает внимание отсутствие ритма у тотальных E-POK и EAC-POK, определяющих основную совокупность лимфоцитов. Максимумы содержания E-, Ea-, Eb, EAC-POK синхронизированы на одно время (6^98) и имеют при этом низкие показатели. На этом фоне выделяются значительным повышением (от нормы) уровня содержания, наличием ритма и синхронизацией на вечерне-ночные часы Ec- и Eh-I-POK. Следует добавить, что поддержание ритма циркуляции E-, Ea- и Eb-POK прихо-
Таблица 2
Суточная динамика относительного содержания субпопуляций лимфоцитов у больных RA на II этапе обследования

<table>
<thead>
<tr>
<th>Тип клеток</th>
<th>Время суток в часах</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>Достоверность различий</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>42,6 ± 3,16</td>
<td>52,6 ± 3,72</td>
<td>46,5 ± 3,52</td>
<td>46,4 ± 2,86</td>
<td>12-6</td>
<td>p < 0,05</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(28)</td>
<td>(28)</td>
<td>(27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ea</td>
<td>28,7 ± 4,33</td>
<td>34,3 ± 4,73</td>
<td>35,1 ± 4,10</td>
<td>34,3 ± 1,28</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(28)</td>
<td>(28)</td>
<td>(27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb</td>
<td>31,7 ± 3,89</td>
<td>30,2 ± 5,41</td>
<td>40,7 ± 3,55</td>
<td>43,9 ± 1,83</td>
<td>24-12</td>
<td>p < 0,05</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(16)</td>
<td>(16)</td>
<td>(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ec</td>
<td>16,0 ± 3,54</td>
<td>29,6 ± 6,20</td>
<td>26,1 ± 1,14</td>
<td>17,2 ± 3,66</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eb-I</td>
<td>15,2 ± 1,21</td>
<td>12,7 ± 2,13</td>
<td>11,0 ± 1,22</td>
<td>13,7 ± 1,87</td>
<td>6-18</td>
<td>p < 0,05</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eh</td>
<td>0,7 ± 0,33</td>
<td>0,3 ± 0,18</td>
<td>1,14 ± 0,40</td>
<td>0,3 ± 0,21</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(7)</td>
<td>(7)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAC</td>
<td>28,0 ± 1,62</td>
<td>26,8 ± 2,11</td>
<td>20,5 ± 1,07</td>
<td>24,0 ± 1,31</td>
<td>6-18</td>
<td>p < 0,001</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(28)</td>
<td>(28)</td>
<td>(27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA</td>
<td>19,9 ± 1,27</td>
<td>17,6 ± 0,97</td>
<td>17,1 ± 0,88</td>
<td>20,0 ± 0,89</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(16)</td>
<td>(16)</td>
<td>(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"O"</td>
<td>29,6 ± 3,51</td>
<td>21,1 ± 3,61</td>
<td>33,1 ± 3,43</td>
<td>30,0 ± 3,19</td>
<td>18-12</td>
<td>p < 0,05</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(28)</td>
<td>(28)</td>
<td>(27)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: x - отсутствие достоверности различий по Стьюденту.

дится на долю средневзвешенной их части: E-РОК 600 (31,1±1,22)
1200 (24,9±1,63) - p < 0,01; Ea-РОК 600 (22,4±1,52) 1200 (16,0±1,52) - p < 0,01; Eb-РОК 600 (24,7±2,76) 1200 (18,2±1,60) -
p < 0,05. Значительно повышено содержание O - лимфоцитов, кортизончувствительность среди Eb-РОК различной активности: 3-10 (27,7±2,60 и 20,1±1,38; p < 0,05); более 10 (10,6±1,56 и 6,3±0,86; p < 0,05), обусловливающая эффект митогенеза кортизоном.
<table>
<thead>
<tr>
<th>Тип клеток</th>
<th>Время суток, ч</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>O</td>
<td>K</td>
<td>O</td>
<td>K</td>
</tr>
<tr>
<td>E</td>
<td>45,5±2,75</td>
<td>42,1±3,57</td>
<td>44,8±2,20</td>
<td>31,2±3,40</td>
<td>39,5±3,49</td>
</tr>
<tr>
<td>Еа</td>
<td>33,6±2,65</td>
<td>30,2±2,83</td>
<td>32,9±2,61</td>
<td>29,5±2,90</td>
<td>30,7±3,27</td>
</tr>
<tr>
<td>Ев</td>
<td>38,9±3,01</td>
<td>26,8±1,53</td>
<td>31,6±3,51</td>
<td>31,0±2,39</td>
<td>27,7±1,56</td>
</tr>
<tr>
<td>ЕАС</td>
<td>25,1±2,30</td>
<td>27,7±2,88</td>
<td>26,8±2,73</td>
<td>21,8±2,14</td>
<td>25,2±2,97</td>
</tr>
</tbody>
</table>

Примечание: K-контроль, O-опыт, xx - отсутствие достоверности различий по Стьюденту.
Таблица 4

Суточная динамика чувствительности субпопуляций лимфоцитов у больных РА к воздействию гидрокортизона in vitro на II этапе обследования

<table>
<thead>
<tr>
<th>Тип клеток</th>
<th>Значения уровня</th>
<th>Время суток в часах</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Е</th>
<th>34,1±2,63</th>
<th>24,5±2,58</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(21)</td>
<td>(21)</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>xx</td>
</tr>
<tr>
<td>Еа</td>
<td>25,0±3,02</td>
<td>24,7±3,76</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(27)</td>
</tr>
<tr>
<td></td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>Ев</td>
<td>33,9±3,50</td>
<td>26,5±3,57</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>ЕАС</td>
<td>35,0±2,09</td>
<td>28,9±1,80</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(9)</td>
</tr>
</tbody>
</table>

Примечание: K-контроль, O-экспит, xx - отсутствие достоверности различий по Стьюденту.
Таблица 5

Суточная динамика чувствительности субпопуляций лимфоцитов у больных РА к воздействию тимоэлина в vitro на I и II этапах обследования.

<table>
<thead>
<tr>
<th>Тип клеток</th>
<th>Время суток в часах</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>O</td>
<td>K</td>
<td>O</td>
<td>K</td>
</tr>
<tr>
<td>I</td>
<td>33,6±2,65</td>
<td>27,6±3,46</td>
<td>32,9±2,61</td>
<td>33,9±2,51</td>
<td>30,7±3,27</td>
</tr>
<tr>
<td>Ea</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>II</td>
<td>25,0±3,02</td>
<td>26,1±3,66</td>
<td>30,6±3,27</td>
<td>35,6±4,32</td>
<td>30,7±3,69</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>(21)</td>
<td>(28)</td>
<td>(21)</td>
<td>(28)</td>
</tr>
<tr>
<td>III</td>
<td>38,9±3,01</td>
<td>47,1±4,36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ев</td>
<td>xx</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>33,9±3,50</td>
<td>26,8±2,75</td>
<td>37,3±4,70</td>
<td>34,5±5,93</td>
<td>46,8±3,18</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(9)</td>
<td>(16)</td>
<td>(9)</td>
<td>(16)</td>
</tr>
<tr>
<td></td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
</tbody>
</table>

Примечание: K - контроль, O - опыт, xx - отсутствие достоверности различий по Стьюденту.
Таблица 6

Спонтанное включение 3Н-тимидина 3-х суточными культурами МНК от больных РА на I и II этапе обследования

<table>
<thead>
<tr>
<th>Время (ч) начала культивирования</th>
<th>I</th>
<th>Достов. различий</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>599±120</td>
<td>$p < 0,01$</td>
<td>185±44</td>
</tr>
<tr>
<td>12</td>
<td>651±165</td>
<td>$p > 0,05$</td>
<td>235±121</td>
</tr>
<tr>
<td>18</td>
<td>578±246</td>
<td>$p > 0,05$</td>
<td>544±188</td>
</tr>
<tr>
<td>24</td>
<td>597±114</td>
<td>$p < 0,01$</td>
<td>191±58</td>
</tr>
</tbody>
</table>

На II этапе между 6 и 18 часами различия достоверны по Т-критерию Стьюдента для зависимых выборок ($p < 0,05$)

Таблица 7

Активность спонтанных неспецифических супрессорных клеток в культурах МНК от больных РА, стимулированных КОА

<table>
<thead>
<tr>
<th>Время (ч) начала культивирования</th>
<th>I</th>
<th>Достов. различий</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1,14±0,112</td>
<td>$p > 0,05$</td>
<td>1,09±0,540</td>
</tr>
<tr>
<td>12</td>
<td>1,03±0,069</td>
<td>$p > 0,05$</td>
<td>1,43±0,363</td>
</tr>
<tr>
<td>18</td>
<td>1,03±0,130</td>
<td>$p > 0,05$</td>
<td>2,51±1,059</td>
</tr>
<tr>
<td>24</td>
<td>0,96±0,097</td>
<td>$p < 0,01$</td>
<td>2,45±0,819</td>
</tr>
</tbody>
</table>

На II этапе между 6 и 18 часами различия достоверны по Т-критерию Стьюдента для зависимых выборок ($p < 0,05$).

Тотальных Е-РОК, а также отсутствие чувствительности к колон-зону в пуле Ев-РОК- все это свидетельствует о преобладании молодых, менее зрелых форм. Вывод подтверждается стимулирующим влиянием тимозина на Ев-РОК и увеличением образования на высоков-авидной доли: 10,6±1,56 и 16,7±2,39; $p < 0,05$. Количественные изменения в субпопуляционной структуре Т-лимфоцитов демонстрируют отсутствие ритма и низкий уровень Т-супрессорной активности, а также значительно повышенный уровень спонтанной ВТК, на пози-III
щих суточного ритма в отличие от активированных (Ен−I) лимфоцитов, имеющих суточную периодику.

Бальнеотерапия является сильным десинхронизирующим фактором, рассогласующим установившиеся при болезни временные процессы выхода в циркуляцию иммунокомпетентных клеток и установление новой суточной архитектоники и количественного соотношения в субпопуляционной структуре Т-лимфоцитов, при этом временные характеристики О-лимфоцитов стабильны, что отмечается и при других экстремальных воздействиях на организм человека (В. П. Лозовой и соавт., 1979). Самогенетический эффект бальнеотерапии проявляется также в нормализации количественного содержания иммунокомпетентных клеток, со снижением количества молодых, менее зрелых форм лимфоцитов и возрастанием их кортизонорезистентной доли с сохранением чувствительности к тимозику у менее зрелых их субпопуляций: Еп− > 10; 20,9±1,68 и 34,2±5,22; р < 0,01. При этом отмечается появление суточного ритма и увеличение Т-супрессорной активности, а также повышение суточного ритма и снижение уровня спонтанной ВГЛ в обоих случаях почти до уровня у здоровых лиц. Отличительным на этом фоне является увеличение и без того высоких показателей (по сравнению со здоровыми лицами) активированных лимфоцитов, а также оставшийся очень высоким уровень стабильных Т-лимфоцитов, которые, как известно, усиливают функцию натуральных киллеров (Galili U. et al., 1979). Возможно, это обстоятельство может лежать в основе усиления аутоиммунного конфликта у той части больных, у которой в процессе и по окончании бальнеотерапии наступает ухудшение клинического состояния.

Литература
Лозовой В. П. и соавт. Вестник АМН СССР, 1979, № 6, с. 39-49.
Хейфец Б. Б., Абакин В. А. Лабор. дело, 1973, № 10, с. 5-79.