АКАДЕМИЯ МЕДИЦИНСКИХ НАУК СССР
СИБИРСКОЕ ОТДЕЛЕНИЕ
ИНСТИТУТ КЛИНИЧЕСКОЙ ИММУНОЛОГИИ

На правах рукописи

ВОЛЬСКИЙ Николай Николаевич

УДК 612.017.12+612.429+616.5

ПРОДУКЦИЯ СУПЕРОКСИДНОГО РАДИКАЛА
ФАГОЦИТИРУЮЩИМИ КЛЕТКАМИ СЕЛЕЗЕНКИ И
ЕЕ СВЯЗЬ С ГУМОРАЛЬНЫМ ИММУННЫМ ОТВЕТОМ

14.00.36 - Аллергология и иммунология

Автореферат
диссертации на соискание ученой степени
кандидата медицинских наук

Новосибирск - 1987
Работа выполнена в лаборатории регуляции иммунопоза
(зав. - доктор медицинских наук, профессор В.А.Козлов) Института клинической иммунологии (директор - член-корреспондент АМН СССР, профессор В.П.Лозовой) СО АМН СССР

Научный руководитель: доктор медицинских наук,
профессор В.А.Козлов

Официальные оппоненты: доктор медицинских наук, профессор
И.С.Фрейдлин, доктор медицинских наук, профессор Д.Н.Маянский

Ведущая организация: Отдел иммунологии 2-го Московского Ордена Ленина Государственного медицинского института

Защита состоится "__" ___________1987 г. в ____ часов
на заседании специализированного совета К 001.01.01 (аллергология и иммунология) при Институте клинической иммунологии СО АМН СССР (630104, г.Новосибирск, ул. Нарымская, 25).

С диссертацией можно ознакомиться в библиотеке Института клинической иммунологии СО АМН СССР.

Автореферат разослан "__" ___________1987 г.

Ученый секретарь
специализированного совета
кандидат медицинских наук

А.В.Шурлыгина
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Изучение регуляции иммунных реакций является одной из центральных проблем иммунологии. Очевидно, что только выяснение основных регуляторных механизмов в иммунной системе дает возможность теоретически понять принципы ее функционирования и использовать их в практических целях. Регуляция функций иммунной системы осуществляется благодаря многообразным и переплетающимся между собой внутрисистемным взаимодействиями иммунокомпетентных клеток, которые тесно связаны с внеклеточными - популяционно-генетическими, нейроэндокринными и другими - регуляторными факторами.

Важнейшим звеном внутрисистемной регуляции иммунных процессов является регуляция, осуществляемая фагоцитирующими клетками - макрофагами и гранулярными лейкоцитами, которые участвуют в развитии и регуляции специфического иммунного ответа практически на всех его этапах. Регуляторные воздействия фагоцитирующих клеток на протекание иммунных процессов обеспечиваются, во-первых, их взаимодействием с антигеном (фагоцитозом, процессированием и презентацией антигенных структур), а во-вторых, выделением большого количества регулирующих факторов, которые влияют на функциональную активность иммунокомпетентных клеток и осуществляют связь и координацию иммунных процессов с функциями других систем организма. Наиболее полно исследовано в настоящее время участие в регуляции иммунного ответа макрофагов (И.Я.Учитель, 1973; И.С.Фрейдлин, 1984; В.А.Козлов, Н.Д.Громыкина, 1984), но имеющиеся в литературе многочисленные данные убедительно доказывают важную роль гранулоцитов в развитии и регуляции иммунных реакций (А.Н.Маянский, Д.Н.Маянский, 1983; Colvin, Dvorak, 1983).

Способность клеток-фагоцитов продуцировать активные формы кислорода, такие как супероксидный радикал (O_2^-), перекись водорода, синглетный кислород, была обнаружена около 15 лет назад и в настоящее время интенсивно изучается. Установлено, что фагоцитирующие клетки обладают сложными ферментными системами, которые продуцируют O_2^-, обеспечивают возникновение других активных интермедиаторов и контролируют их уровень в клетках. Убедительно доказана связь продукции O_2^- с осуществлением клетками-фагоцитами их эффекторных - бактерицидной и цитотоксической - функций (Н.И.Суслов, 1984; Nathan, 1982; Babior, 1984). В то же
время связь продукции O_2^- с иммунорегуляторной функцией фагоцитирующих клеток до сих пор практически не изучена. Поэтому уста-
новление связи между продукцией O_2^- клетками-фагоцитами и величи-
ной иммунного ответа представляет весьма актуальную проблему,
решение которой было бы определенным шагом вперед в понимании
роли метаболической активации клеток-фагоцитов в регуляции им-
мунных процессов.

Цель и задачи исследования. Исходя из вышеизложенного,
целью настоящей работы было исследование продукции O_2^- клетками-
фагоцитами и ее связи с гуморальным иммунным ответом. Для осу-
ществления данной цели были поставлены следующие задачи:

1) Исследовать продукцию O_2^- клетками селезенки мышей в раз-
личные сроки после иммунизации эритроцитами барана (ЭБ) и при
различных дозах антигена.

2) Оценить участие в продукции O_2^- неприлипающих клеток се-
лезенки.

3) Изучить влияние на продукцию O_2^- клетками селезенки иммуно-
модулирующих агентов, включая соединения – индукторы микроно-
сомальных монооксидаз.

4) Выявить наличие (или отсутствие) связи между продукцией O_2^-
фагоцитирующими клетками селезенки мышей и величиной гуморально-
го иммунного ответа на ЭБ на фоне введения иммуномодуляторов.

5) Изучить участие O_2^- в регуляции уровня пролиферативного от-
вета лимфоцитов на митогены.

6) Изучить действие одного из индукторов микросомальных моно-
оксидаз – лекарственного препарата экскосина – на продукцию O_2^-
клетками-фагоцитами и на иммунные реакции в эксперименте на жи-
вотных и оценить возможность его применения в клинической прак-
тике в качестве иммуномодулирующего средства.

Научная новизна результатов. В данной работе впервые пока-
зано – в экспериментах in vitro – существование связи между про-
дукцией O_2^- фагоцитирующими клетками селезенки и уровнем антите-
лологенеза в этом органе при иммунизации эритроцитами барана. Об-
наружено, что величина антиген-зависимой гиперпродукции O_2^- хорошо коррелирует с величиной гуморального иммунного ответа как у
интактных мышей, так и на фоне введения иммуномодуляторов. Кроме
того впервые доказано участие O_2^- в процессе митоген-индукцирован-
ной пролиферации лимфоцитов человека и мыши, что может быть оди-
ним из механизмов, опосредующих связь между продукцией O_2^- в се-
лезенке и гуморальным иммунным ответом. Получены новые данные о

2
наличии иммуномодулирующих свойств у лекарственного препарата из группы индукторов микросомальных монооксидигеназ - зиксорина. Впервые показано стимулирующее влияние гидрокортизона на продукцию О₂³ клетками-фагоцитами.

Теоретическая и практическая значимость работы. Представление в работе даты говорит о наличии физиологической взаимосвязи между продукцией активных форм кислорода клетками-фагоцитами и интенсивностью процесса антителогенеза. Выводы, вытекающие из этих результатов, могут служить основой для исследования молекулярных механизмов, связывающих метаболическую активность фагоцитирующих клеток с их иммунорегуляторной функцией. Полученные данные говорят также о возможности использования скорости продукции О₂³ в качестве одного из показателей участия клеток-фагоцитов в регуляции иммунных реакций. Практическую ценность имеют данные о наличии иммуномодулирующих свойств у лекарственного препарата "Зиксорин" и о возможности его применения в качестве антиаллергического средства. Это свидетельствует о перспективности использования в качестве из группы индукторов, микросомальных монооксидигеназ как иммуномодуляторов.

Объем и структура диссертации. Диссертация изложена на страницах машинописного текста, содержит 14 таблиц и 25 рисунков. Диссертация состоит из введения, обзора литературы, материалов и методов, 5 разделов, содержащих результаты собственных исследований и их обсуждение, заключения и выводов. Библиография включает 329 источников, из них 68 на русском языке.
СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы

Экспериментальные исследования проведены на мышах—самцах линий CBA и C57BI, а также на гибридных мышах P₁(CBA x C57BI). Животных получали из питомника АМН СССР "Столбовая" и использовали в возрасте 2—4 месяца. Мыши получали стандартную сбалансированную диету. Во всех опытах исследования проводились одновременно у опытных и контрольных животных.

Скорость продукции O_2^- определяли спектрофотометрическим методом, основанным на восстановлении нитрозиного тетразолия (Amadio et al., 1975). Результаты выражали в условных единицах, принимая за единицу активность увеличение оптической плотности при 570 нм на 0,001 од за 45 минут. Процесс фагоцитоза инициировали добавлением частиц латекса в среду инкубации. Поскольку скорость продукции O_2^- НАД(Ф)Н-оксидазой клеток—фагоцитов зависит как от активности самого фермента, так и от уровня восстановленных пиридиннуклеотидов в клетках, была исследована также скорость этой реакции в условиях избыточной донора электронов. Для этого в некоторых опытах в среду инкубации добавляли различные концентрации НАД H_2. Величины V_{max} и K_M для НАД H_2 определяли при этом графически, используя метод двойных обратных величин (Dickson, 1966).

Величину гуморального иммунного ответа оценивали по количеству антителообразующих клеток (АКИ) в селезенке на четверть сутки после иммунизации ЭБ в дозе 2 х 10^3 клеток (Cunningham, 1968). Выраженность реакции гиперчувствительности замедленного типа (ГИТ) оценивали, измеряя толщину лапки у мышей через 24 часа после введения разделяющей дозы ЭБ (Yoshikai et al., 1979). Клиренс коллоидного угля определяли по методу И.Я.Учитель (1975), графически определяя при этом время полувведения и величину фагоцитарного индекса. Удаление прилипающих клеток проводили с помощью двухкратного прилипания к пластинке, инкубируя спленоциты на чашках Петри в течение 1 часа при 37°С. Содержание фагоцитирующих клеток в селезенке оценивали после в/v введения мышам частиц коллоидного угля или латекса, подсчитывая в масках, приготовленных из суспензии спленоцитов, относительное количество клеток, содержащих фагоцитированные частицы (И.Я.Учитель, 1975). Интенсивность пролиферации лимфоцитов оценивали по включению H^-тими-
дина в ДНК клеток, культивируя лимфоциты в течение 72 часов в воздухе, содержащем 5% CO₂, и стимулируя пролиферативный ответ оптимальной (10 мкг/мл) дозой конканавалина А. При этом моно-
нуклеарные клетки из периферической крови здоровых доноров куль-
tивировали в среде И99, содержащей 20% сыворотки крови человека
IY группы, а спленоциты мышей - в среде RPMI 1640 с добавлением
Hepes (20 мМ, pH 7,4), телячьей эмбриональной сыворотки (10%),
гентамицина (50 мкг/мл), L-глютамина (2 мМ) и 2-меркаптоэтанола
(30 мМ).

Гидрокортизон ацетат, 3,4-бензилпирен, 3-метилхолантирен и ле-
вамизол вводили мышам в/в в дозах 50, 100, 50 и 25 мг/кг веса,
соответственно. Эпизорин вводили перорально в течение 3 дней в
dозе 200 мг/кг веса/сутки. Обработанные фенилгидразином эритро-
циты получали из крови мышей, которым за сутки до забоя вводили
в/в трёхкратно по 1 мг фенилгидразина гидрохлорида, такие "фе-
нилгидразиновые" эритроциты вводили синтезированными мышам в/в в дозе
0,2 мл эритровзвеси на мышь. Продигоцин вводили мышам в/в в
dозе 10 мкг/мышь. Исследования продукции O₂ или иммунокомплексной
жильной проводили через 1 сутки после введения иммуномодуляторов.

Клинические испытания препарата "Эпизорин" в качестве анти-
аллергического средства были проведены по поручению Фармакологи-
ческого комитета Управления по внедрению новых лекарственных
средств и медицинской техники Минздрава СССР. Было проведено ле-
чение эпизорином 44 больных аллергическими дерматозами, из них
30 страдали хроническими рецидивирующей крапивницей и 14 боль-
ных - атопическим дерматитом. Каждый больной после предваритель-
ного клинического и лабораторного обследования получал по 200 мг
эпизорина 3 раза в день в течение 5 дней. Во время лечения эпизо-
рином больные не получали никаких других лекарств. Через 1 - 2
dня после последнего приема лекарств больным проводилось пов-
торное обследование.

Клинико-иммунологические тесты проводили по модифицированному методу
Фарк (Э.М. Тананко и др., 1981). Количество общего иммуноглобули-
на E в сыворотке крови больных определяли с помощью стандартных
наборов "Phadebas IgE HIST" радиоиммунным методом. Относитель-
ное содержание лимфоцитов и эозинофильных лейкоцитов определяли
в мазках крови, окрашенных по Романовскому-Гимзе. Содержание
T-лимфоцитов в крови определяли методом розеткообразования с эри-
троцитами барана (Galilzy et al., 1975), а содержание B-лимфоци-
тов - методом розеткообразования с эритроцитами быка (Mendes et
al., 1973).
Статистическую оценку значимости различий исследуемых показателей осуществляли с помощью непараметрических критериев Манна—Уитни и знаково-рангового критерия Уилкоксона, величину связи между показателями и ее значимость оценивали с помощью коэффициента линейной корреляции и критерия точной вероятности Фишера (Рунюн, 1982; Ферстер, 1983).

Результаты и обсуждение

Продукция O_2^- фагоцитирующими клетками селезенки мышей и ее изменения при иммунизации животных. Средняя скорость продукции O_2^- спленоцитами мышей-самцов линии СВА составляет $4,2 \pm 0,3$ ед./10^6 клеток и на 60% ингибируется добавлением супероксиддисмутазы, что хорошо совпадает с литературными данными (Baehner et al., 1975). Добавление к суспензии клеток фагоцитируемых частичь латекса стимулировало продукцию O_2^- в 2—3 раза. Инкубация клеток в присутствии высоких концентраций экзогенного донора электронов (NAD•H₂) позволила оценить максимальную скорость продукции O_2^-, которая у мышей линии СВА равнялась $35,8 \pm 1,7$ ед./10^6 клеток.

Удаление прилипающих клеток из суспензии спленоцитов с помощью двухкратного прилипания к пластике сопровождалось резким (более, чем на 90%) снижением скорости продукции O_2^- спленоцитами (в исходной суспензии спленоцитов скорость продукции O_2^- равнялась в этой серии опытов $7,2 \pm 0,9$ ед./10^6 клеток, а в популяции неприлипших клеток $0,6 \pm 0,1$ ед./10^6 клеток). Отсюда видно, что в неразделенной суспензии клеток селезенки продукция O_2^- осуществляется в основном клетками—фагоцитами и что ее определение может служить хорошей оценкой интенсивности кислородного метаболизма фагоцитирующих клеток селезенки мышей. Этот вывод подтверждается трехкратным увеличением продукции O_2^- клетками селезенки при фагоцитозе частиц латекса и хорошо согласуется с литературными данными о том, что лимфоциты, в том числе лимфоциты из селезенки мышей, практически не продуцируют O_2^- (М.И. Карсонова, С.В. Пирагин, 1985; Badway et al., 1983).

Иммунизация животных сопровождалась достоверным увеличением продукции O_2^- через 6 часов после в/в введения антigена (ЭФ). Увеличение продукции O_2^- после введения 2×10^6 ЭФ составляло у мышей линии СВА в среднем $87 \pm 18\%$ от исходного уровня продукции.
О₂ (у мышей-гибридов F₁ скорость продукции О₂ увеличивалась в среднем на 48%). В серии опытов было исследовано влияние дозы антигена на увеличение продукции О₂ фагоцитирующими клетками селезенки. Полученные данные показывают (Рис. I), что параллельно

Рис. I. Влияние дозы антигена на скорость продукции О₂ фагоцитирующими клетками селезенки мышей линии СВА через 6 часов после в/в введения ЭБ.

достоверное отличие от контроля (Р<0,01)

увеличению дозы ЭБ от 2 х 10⁵ до 2 х 10⁸ увеличивается и прирост продукции О₂ по сравнению с неиммунизированными животными. Дальнейшее увеличение дозы ЭБ не сопровождалось повышением продукции О₂, а даже имелась тенденция к некоторому снижению этого показателя. Максимальная продукция О₂ (измеренная в присутствии 500 мкМ НАД·Н₂) также достоверно увеличивалась после иммунизации большими дозами антигена, но увеличение этого показателя было менее выражено и четкой зависимости от дозы антигена не обнаруживалось.

Определение содержания в селезенке клеток, фагоцитирующих
частицы коллоидного угля и латекса, показало, что количество таких клеток через 6 часов после введения ЭБ не отличается от их количества в селезенке неиммунизированных мышей, и что, следовательно, наблюдаемое в этот срок повышение продукции O_2^- не может быть объяснено увеличением количества фагоцитирующих клеток в селезенке.

Полученные данные свидетельствуют о функциональной активации клеток-фагоцитов селезенки через несколько часов после их контакта с антителом, что проявляется в увеличении продукции O_2^- этими клетками и, вероятно, связано с их участием в регуляции процессов иммуногенеза.

Влияние иммуномодуляторов на продукцию O_2^-. Поскольку действие иммуномодулирующих агентов на иммунный ответ во многих случаях зависит от их влияния на функциональную активность фагоцитирующих клеток, было предложено, что такое влияние может проявляться в изменении продукции O_2^- этими клетками. Для проверки этого предположения была изучена продукция O_2^- в селезенке после введения животным 7 различных веществ, стимулирующих или супрессирующих гуморальный иммунный ответ.

Продукция O_2^-, ед./10^6 клеток

Рис. 2. Действие гидрокортизона на стимулированную латексом продукцию O_2^- клетками-фагоцитами селезенки мышей линии СВА.

*достоверное отличие от контроля ($P < 0,01$)
Наиболее подробно было изучено влияние на этот процесс глюкокортикокоидного гормона гидрокортизона. Было установлено, что введение гидрокортизона мышам вызывает через 2 часа увеличение стимулированной латексом продукции O_2^- в 1,8 раза по сравнению с контролем (Рис. 2). При добавлении к суспензии спленоцитов различных концентраций гормона in vitro показано, что величина V_{max} НАД(Ф)Н-оксидазы фагоцитов линейно увеличивается в зависимости от концентрации гидрокортизона в инкубационной среде (Рис. 3).

Рис. 3. Влияние гидрокортизона in vitro на максимальную скорость продукции O_2^- фагоцитирующими клетками селезенки мышей линии CBA.

Поскольку активация фермента наблюдалась уже в течение нескольких минут после добавления гормона и поскольку этот процесс не ингибировался актиномицином D, сделан вывод о том, что эффект гидрокортизона опосредован его прямым действием на мембраны клеток-фагоцитов. Подобное непосредственное действие глюкокортикокоидов на клеточные мембраны многократно описано в литературе (П.В. Сергейев...
и др., 1971).
Два других, исследованных в данной работе, иммуномодулирующих агента — пролонгированный "фенилгидазиновые" эритроциты — увеличивали продукцию О₂ фагоцитирующими клетками селезенки мышей через сутки после введения их животным. Это совпадает с литературными данными о том, что эти агенты изменяют функциональную активность фагоцитов (В.А. Козлов и др., 1982; Д.Н. Лазарева, Е.К. Алехин, 1985).
Из четырех исследованных веществ, принадлежащих к классу индукторов микросомальных монооксидаз, три соединения — метилхолантрен, бензпириен и экскорин — достоверно изменили продукцию О₂ клетками—фагоцитами селезенки. При этом ароматические углеводороды увеличивали, а экскорин снижал скорость этого процесса. Влияния левамизола на скорость продукции О₂ не обнаружено.
Таким образом, было установлено, что почти все исследованные вещества изменяют скорость продукции О₂ в селезенке мышей, и это свидетельствует в пользу существования достаточно тесной взаимосвязи между иммуномодулирующей активностью изученных соединений и их влиянием на метаболическую активность фагоцитов. В то же время полученные в этих экспериментах результаты не позволяют сделать какой-либо конкретный вывод о характере зависимости между метаболической и иммунорегуляторной активностью фагоцитирующих клеток селезенки, так как некоторые из исследованных веществ с супрессирующим влиянием на гуморальный иммунный ответ (гидрокортизон, фенилгидразин) стимулировали продукцию О₂ в селезенке, а другие (бензпириен, метилхолантрен), также являющиеся иммунодепрессантами, подавляли скорость этого процесса.
Связь между продукцией О₂ в селезенке мышей и гуморальным иммунным ответом. Исходя из вышеперечисленных результатов, было предложено, что метаболическим показателем, отражающим регуляторную роль клеток—фагоцитов в формировании иммунного ответа, может быть не исходная (до иммунизации) скорость продукции О₂, а ее изменения в ответ на иммунизацию. Для проверки этого предположения была проведена серия экспериментов, в которой изучены изменения продукции О₂ после антигенного воздействия на фоне введения иммуномодуляторов, при этом параллельно измерялась величина иммунного ответа на ЭБ.
Почти все использованные иммуномодулирующие агенты (за исключением левамизола) достоверно изменили уровень гуморального иммунного ответа. Направленность действия исследованных веществ
на величину иммунного ответа совпадала при этом с их эффектами, описанными в литературе. Иммунностимулирующее действие зиксорина на гуморальный иммунный ответ описано нами впервые (Н.Н.Больский и др., 1985).

Было установлено, что прирост продукции $O_2^−$ в ответ на введение антигена (то есть скорость продукции $O_2^−$ через 6 часов после введения ЭБ минус скорость продукции $O_2^−$ до иммунизации) — параметр, обозначенный как "антиген-зависимая гиперпродукция $O_2^−$" (А3Г) — изменяется у мышей после введения иммуномодуляторов, причем направленность изменений величины А3Г хорошо совпадает с направленностью действия иммуномодуляторов на величину иммунного ответа (Рис. 4).

Величина иммунного ответа и величина А3Г, усл. ед.

Рис. 4. Действие иммуномодуляторов на величину иммунного ответа на ЭБ и на величину А3Г.
1 — контроль, 2 — "фенилгидразиновые" эритроциты, 3 — продигиозан, 4 — бензпирен, 5 — метилхолан-трен, 6 — зиксорин, 7 — левамизол.
Пользуясь критерием точной вероятности Фишера, было установлено, что совпадение между действием иммуномодуляторов на величину АЭГ в селезенке и величину иммунного ответа не случайно и что эти эффекты связаны достоверной (П < 0,025) связью. Вычисление коэффициента линейной корреляции показало (Рис. 5), что между величиной АЭГ и количеством АОК в селезенке мышей линии СБА существует достоверная положительная корреляция (r = +0,61).

Рис. 5. Корреляция между величиной гуморального иммунного ответа на ЭБ и величиной антитело-зависимой гиперпродукции 0_2 у мышей линии СБА.

- интактные мыши
- мыши, получавшие иммуномодуляторы

Таким образом, результаты экспериментов in vivo доказывают, что наблюдаемые в ранние сроки после введения антитена стимуляция продукции 0_2 клетками-фагоцитами селезенки отражает интенсивность процессов иммуногенеза в этом органе, а воздействия, которые увеличивают или уменьшают величину такой стимуляции -
величину АЗГ — сопровождаются соответствующими изменениями величины гуморального иммунного ответа. Это говорит о существовании в физиологических условиях функциональной связи между метаболической активностью фагоцитирующих клеток селезенки — одним из показателей которой может служить продукция O2 — и уровнем иммунного ответа. Клеточные и биохимические механизмы, связывающие продукцию O2 — с процессом антителогенеза, неизвестны, но одним из возможных объяснений наблюдаемой связи может быть непосредственное участие O2 — (или его метаболитов) в регуляторных воздействиях, оказываемых клетками-фагоцитами на иммунный ответ.

Участие O2 — в митоген-стимулированной пролиферации лимфоцитов. Было предложено, что этапом иммуногенеза, который регулируется с участием O2 —, может быть процесс пролиферации лимфоцитов. Поскольку известно, что многие митогены — в том числе и конканавалин А — стимулируют продукцию O2 — фагоцитами (Korchak et al., 1983), было изучено влияние супероксиддисмутазы (СОД) на пролиферацию лимфоцитов человека и мыши, стимулированную Кон А.

Установлено, что внесение в культуру клеток СОД в дозе 100 мкг/мл достоверно (Р<0,001) ингибитирует пролиферативный ответ на Кон А мононуклеарных клеток из периферической крови здоровых доноров в среднем на 43%. В то же время добавление к культуре клеток фермента, инактивированного нагреванием, не оказывало влияния на пролиферацию лимфоцитов.

Ингибитирование митоген-стимулированной пролиферации было обнаружено также при добавлении СОД к культурам плентоцитов мышей линии C57Bl.* Подтверждением того, что эффект СОД в этой системе связан с удалением O2 — из среды инкубации, являются результаты опытов с Cu(Lys)2 — хелатом меди с супероксиддисмутазной активностью, — обнаружившие дозозависимый эффект этого соединения на процесс пролиферации лимфоцитов мыши (Рис. 6). Ни СОД, ни Cu(Lys)2 не влияли в этих опытах на жизнеспособность культивируемых клеток.

Ранее было известно, что выделяемые макрофагами перекись водорода обусловливает (совместно с простагландинами) супрессирующее влияние этих клеток на пролиферацию лимфоцитов (Metzger et al., 1980; Whisler et al., 1982). Описанные выше результаты

*Спектры проведены совместно с Н.В.Кашлаковой
позволяют предполагать, что выделяемые макрофагами активные формы кислорода опосредуют не только ингибитирующее, но и стимулирующее влияние макрофагов на пролиферацию лимфоидных клеток.

Интенсивность пролиферации, % от контроля

Рис. 6. Влияние различных концентраций Cu(Lys)$_2$ на уровень стимулированной Кон A пролиферации спленоцитов мышей линии C57Bl.

Таким образом, участие О$_2$ и его метabolитов в регуляции процесса пролиферации лимфоцитов может быть одним из механизмов, объясняющих наличие связи между продукцией О$_2$ в селезенке и величиной гуморального иммунного ответа.

Исследование иммуномодулирующих свойств препарата "Зиксо-рин" и его применение в качестве антиаллергического средства. В ранее описанных опытах с иммуномодуляторами было установлено,
что зиксорин изменяет скорость продукции O_2^- фагоцитирующих клетками селезенки и стимулирует гуморальный иммунный ответ на ЭБ. Исходя из этих данных и учитывая клиническое использование зиксорина, было более подробно изучено его влияние на иммунные реакции.

Из Рис. 7 видно, что зиксорин оказывает ингибитирующее действие на реакцию гиперчувствительности замедленного типа (ГЗГ).

Разность в толщине лапок, мм

Рис. 7. Влияние трехкратного введения зиксорина в дозе 200 мг/кг веса на реакцию ГЗГ у мышей P_i.
1 - контроль, 2 - после введения зиксорина
*достоверное отличие от контроля ($P<0,05$)
Следовательно, стимулируя гуморальный иммунный ответ на ЗБ, зиксякорин одновременно подавляет реакцию ГЭТ на этот же антиген. Подобное разнонаправленное действие на величины гуморального и клеточного иммунного ответа показано для некоторых иммуномодуляторов, которые влияют на функциональную активность клеток-фагоцитов (Megel et al., 1974; Baird et al., 1975).

Было обнаружено, что зиксякорин увеличивает клиренс тушки у мышей (величина фагоцитарного индекса достоверно повышалась с 0,065 ± 0,005 до 0,115 ± 0,012 после трехкратного введения зиксякорина в дозе 120 мг/кг веса). Исходя из этих данных и принимая во внимание повышение величины АЗГ под влиянием зиксякорина (Рис. 4), можно считать, что эффект этого лекарства на иммунные реакции опосредуется его влиянием на фагоцитирующие клетки.

Рис. 8. Содержание IgE в сыворотке крови у больных аллергическими дерматозами до и после лечения зиксякорином.
I - группа больных, у которых зарегистрировано клиническое улучшение;
II - группа больных с отсутствием клинического эффекта
*достоверное отличие (P<0,01)
Клинические испытания эпикорина* показали, что он обладает лечебным эффектом у больных аллергическими дерматозами. Недельный курс лечения эпикорином приводил к улучшению клинического состояния у 61% обследованных больных. Это сопровождалось нормализацией лабораторных показателей после курса лечения: у больных снижался средний уровень НСТ-теста (с 26,8 ± 5,6% до 12,4 ± 3,4%) и уменьшалось содержание IgE в сыворотке крови (с 192 ± 43 кг/л до 154 ± 35 кг/л). При этом понижение уровня IgE хорошо совпадало с клиническим эффектом лечения: достоверное снижение уровня IgE было обнаружено лишь в группе больных с улучшением клинического состояния и практически не наблюдалось в группе больных, у которых лечение эпикорином не дало благоприятного эффекта (рис. 2). Содержание Т- и В-лимфоцитов в крови больных после лечения эпикорином не изменилось.

Таким образом, полученные в данной работе результаты свидетельствуют о существовании физиологической взаимосвязи между изменениями продукции 02 фагоцитирующими клетками селезенки мышей при иммунизации и интенсивностью иммуногенеза в этом органе. Это дает возможность нового подхода в изучении молекулярных механизмов регуляторной роли фагоцитов в развитии иммунных реакций.

ВЫВОДЫ

1. Между продукцией 02 в селезенке мышей и интенсивностью гуморального иммунного ответа существует функциональная взаимосвязь, с чем свидетельствует зависимое от дозы антигена увеличение скорости продукции 02 в селезенке через 6 часов после иммунизации эритроцитами барана и наличие положительной корреляции между величиной антиген-зависимой гиперпродукции 02 и количеством антителообразующих клеток в селезенке иммунизированных животных.

2. Одним из эффектов действия ряда иммуномодулирующих агентов являются изменения продукции 02 в селезенке мышей, причем повышение величины антиген-зависимой гиперпродукции 02 под влиянием иммуномодуляторов сопровождается стимуляцией гумораль-

В проведении клинических испытаний участвовали В.М. Непомнящий, Т.А. Попикова, Л.Б. Доншиц, И.И. Лубянская, И.Н. Нагорная.
него иммунного ответа на эритроциты барана, а ее снижение – супрессией иммунного ответа.

3. Активация кислородного метаболизма клеток-фагоцитов может быть одним из механизмов влияния гликокортикоидных гормонов на иммунный ответ, так как установлено, что одним из самых ранних эффектов гидрокортизона является стимуляция продукции О₂⁻ в селезенке мышей, благодаря увеличению активности НАД(Ф)Н-оксидаз.

4. Супероксидный радикал участвует в регуляции процесса пролиферации лимфоцитов, поскольку снижение его концентрации в среде культивирования с помощью супероксиддисмутазы или Cu(Lys)₂ – хелата меди с супероксиддисмутазной активностью – ингибирует пролиферацию лимфоцитов человека и мыши, стимулированную конканавалином А.

5. Лекарственный препарат из группы индукторов микросомальных монооксигеназ "Зиксорин" является иммуномодулирующим средством, так как он стимулирует у мышей гуморальный иммунный ответ на эритроциты барана, одновременно подавляя реакцию гиперчувствительности замедленного типа на этот же антиген. Иммунномодулирующий эффект зиксорина опосредуется его действием на клетки-фагоциты, причем одним из эффектов такого воздействия является изменение продукции О₂⁻ фагоцитирующими клетками.

6. Секреция О₂⁻ и его метаболитов клетками-фагоцитами является, наряду с секрецией фагоцитами других веществ, одним из параметров, отражающих регуляторные влияния этих клеток на иммунные реакции.

Список работ, опубликованных по теме диссертации

3. Тананко Э.М., Непомнящих В.М., Вольский Н.Н. Возможность применения НСТ-теста, как метода оценки эффективности лечения у больных аллергическими заболеваниями // Профилактика,
диагностика и лечение аутоиммунных заболеваний и вторичных иммунодефицитов. Тез. докл. Всесоюз. конференции. - Новосибирск - 1985. - С. 103 - 104.

Подписано к печати 10.04.87 г.
МН 13494. Неч. л. 1,0. Тираж 100 экз.
Отпечатано ротаприントом СО АМН СССР
Заказ № 327.