В ПЕРИТОНЕАЛЬНЫХ МАКРОФАГАХ МЫШИ

Abstract

Ключевые слова: ацил-КоА-холестерин-ацилтрансфераза, макрофаги, кетоконазол.

Чтобы определить возможную роль цитохром P-450-зависимых монооксигеназ в регуляции активности ацил-КоА-холестерин-ацилтрансферазы (AXAT) в макрофагах (МФ), изучали влияние кетоконазола на активность бенз(а) пиренгидроксилазы, АХАТ и включение [${ }^{14} \mathrm{C}$]олеата в эфиры холестерина в культивируемых перитонеальных $М \Phi$ мыши. Кетоконазол ($5 \cdot 10^{-7}-5 \cdot 10^{-5} \mathrm{M}$) ингибировал активность бенз(а) пиренгидроксилазы и повышал уровень свободного холестерина (СХС) в МФ, культивируемых с ацетилированными липопротеидами низкой плотности (ацетилЛПНП). При добавлении кетоконазола ($5 \cdot 10^{-7}-5 \cdot 10^{-5}$ М) подавлялось повышение скорости эстерификации СХС при инкубации $М \Phi$ с ацетилЛПНП, но не с 25 -гидроксиХС. Напротив, ингибитор АХАТ - прогестерон $\left(5 \cdot 10^{-6}-3 \cdot 10^{-5} \mathrm{M}\right.$) снижал скорость эстерификации СХС как при инкубации МФ с ацетил-ЛПНП, так и -25-гидроксиХС. Кетоконазол вызывал до-зо-зависимое снижение включения [$\left.{ }^{3} \mathrm{H}\right] \mathrm{CXC}$ в полярные окисленные стероиды МФ. Предполагается, что влияние кетоконазола на эстерификацию СХС в $М Ф$ определяется ингибированием монооксигеназ, которые продуцируют окисленные формы холестерина, активирующие AXAT.

В настоящее время широко принято, что оптимальный уровень свободного холестерина (СХС) в мембранх клеток эукариот обеспечивается в результате регуляции процессов биосинтеза СХС, образования эфиров холестерина (ЭХС) и транспорта холестерина (ХС) в клетки в составе липопротеинов (ЛП) при участии апопротеин В/Е-рецепторов [1]. В макрофагах, накапливающих XC путем нерегулируемого захвата модифицированных ЛП низкой плотности (ЛПНП), активация ацил-КоА-холестерин-О-ацилтрансферазы (АХАТ, КФ 2.3.1.26) и стимуляция эстерификации СХС становится главным условием поддержания постоянства концентрации CXC в мембранах [2].

Вместе с тем механизмы регуляции активности АХАТ изучены недостаточно. В последнее время в литературе обсуждается вопрос о возможном участии некоторых окисленных продуктов XC в регуляции холестеринового обмена. В частности показано, что 25 -гидроксиХС стимулирует активность AXAT во фракции микросом и эстерификацию СХС в культивируемых клетках [3]. Повышение концентрации гидроксипроизводных ХС, обладающих способностью регулировать синтез СХС, обнаружено в печени мышей, получавших с диетой очищенный XC [4], что указывает на возможность трансформации ХС в окисленные стероиды при участии цитохром $P-450$-зависимых монооксигеназ. Это предположение согласуется с результатами исследований, полученными на

эпителиальных клетках кишечника, в которых известный ингибитор цитохрома $P-450$ - кетоконазол - нарушал регуляцию синтеза СХС, его эстерификации и продукции апопротеин В/Е-рецепторов в присутствии высоких концентраций ЛПНП в культуральной среде [5, 6]. Недавние исследования на клетках линии гепатомы также показали, что кетоконазол вызывал парадоксалыное повышение продукции B/E-рецепторов в клетках, культивируемых с ЛПНП [7].

Возникает вопрос, может ли активность монооксигеназ иметь в принципе какое-либо отношение к регуляции активности AXAT в макрофагах (МФ), которые накапливают массивные количества ЭХС в результате нерегулируемого захвата модифицированных ЛПНП. Чтобы ответить на него, в настоящей работе изучены и сопоставлены вызываемые кетоконазолом изменения образования 3 -гидроксибенз (а) пирена, активности АХАТ и скорости включения [${ }^{14} \mathrm{C}$]олеата в ЭХС МФ, культивируемых с ацетилированными ЛПНП (ацетил-ЛПНП) и 25 -гидроксиХС.

МЕТОДЫ ИССЛЕДОВАНИЯ

В работе использованы аналитически чистые реактивы: [1-14 C]олеат, [1-14 C]оле-ил-Коэнзим А, $\left[7 \cdot{ }^{3} \mathrm{H}\right]$ холестерин с удельной радиоактивностью 56 мКи/ммоль, 55 мКи/ /ммоль и 10 Ки/ммоль, соответственно («Аmersham», Англия); СХС и бычий сывороточный альбумин (БСА) («Sigma», США); кетоконазол («Ianssen», Бельгия); бенз(a)пирен («Fluka», Швейцария); прогестерон, тритон X-100, О-фталевый альдегид («Serva», ФРГ); силикагель H («Merck», ФРГ); гентамицин («Pharmachim», Болгария); сцинтилляционный толуол, РРО, POPOP, гексан, изопропанол марки х. ч., перегнанный метанол, этанол, среда RPMI-1640, L-глютатион, эмбриональная сыворотка телят отечественного производства.

Препаративные методы. ЛПНП (1,019-1,055 г/мл) выделяли из плазмы доноров методом ультрацентрифугирования [8]. Ацетилирование ЛПНП проводили с использованием уксусного ангидрида [9]. Низкомолекулярные продукты реакции удаляли хроматографией на сефадексе G-25 с последующим диализом ацетил-ЛПНП против $0,02 \mathrm{M}$ фосфатного буфера, pH 7,4 с $0,15 \mathrm{M} \mathrm{NaCl}$. Растворы стерилизовали с помощью фильтра с диаметром пор 0,22 мкм. 25 -гидроксиХС выделяли из смеси окисленных продуктов XC, полученных при термической обработке СХС на воздухе при температуре 60° в течение 5 недель [10]. Содержание 25 -гидроксиХС после термической обработки СХС на воздухе, определяемое спектрофотометрическйм методом с использованием О-фталевого альдегида [111, составляло $5,13 \pm 2,3 \%$ от общего содержания стероидов смеси ХС и его окисленных продуктов. Разделение стероидов осуществляли методом высокоэффективной тонкослойной хроматографии (TCX) на силикагеле H в системе растворителей этилацетат: гептан в объемном соотношении $1: 1$ [10]. 25-ГидроксиХС ($R_{f} 0,45-0,65$) экстрагировали из силикагеля смесью хлороформа и метанола ($2: 1$, об/об), органический растворитель удаляли под вакуумом и хранили при - 20° не более двух недель.

Получение и культивирование макрофагов. МФ получали из перитонеальной жидкости $6-8$-недельных мышей гибридов F_{1} (CBAXC57B16) на пятый день после внутрибрюшинной инъекции 5%-ного раствора гликогена на $0,05 \mathrm{M}$ фосфатном буфере, pH 7,4 , содержащем $0,15 \mathrm{M} \mathrm{NaCl}$ (ФБС). 3 мл среды RPMI-1640 с глютатионом, 30% эм бриональной сывороткой телят, гентамицином (100 ед. в 1 мл) вводили в брюшную полость мышей и после забора перитонеальной жидкости клетки собирали центрифугированием ($400 \mathrm{~g}, 10$ мин). Осадок ресуспендировали в среде того же состава до плотности клеток $2 \cdot 10^{-6}$ в 1 мл, 2 мл суспензии вносили в чашки Петри (Falcone) диаметром 35 мм и инкубировали в атмосфере $\mathrm{CO}_{2}\left(5 \%\right.$) и воздуха (95%) при 37° в течение 2 ч. Қлеточный монослой отмывали 7 раз по 4 мл средой RPMI-1640 и МФ инкубировали в среде RPMI-1640, содержащей $0,2 \%$ БСА и 100 ЕД/мл гентамицина [12]. Раствор этанола, содержащий 25 -гидроксиХС (0,2 вес. $\%$) и кетоконазол (1,2 0,015 вес.\%), вносили в среду инкубации в объеме, не превышающем 5 мкл/мл среды. В контрольные чашки вносили эквивалентное количество этанола.

Скорость образования ЭХС, триглицеридов (ТГ) и фосфолипидов (фЛ) в МФ оценивали по включению [$\left.1-{ }^{14} \mathrm{C}\right]$ олеата в соответствующие липиды в течение 10 ч культивирования клеток [12]. Экстракцию липидов из клеток проводили смесью гексана н изопропанола в объемном соотношении $3: 2$ [12] и отдельные классы липидов получали методом ТСХ, описанным ранее [13]. Липидные пятна, соответствующие ЭХС,

ТГ и ФЛ, переносили е сцинтилляционные виалы и подсчитывали радиоактивность. Результаты выражали в нмоль эстерифицированного олеата на 1 мг клеточного бел ка.

Определение активности бенз(а)пиренгидроксилазы в МФ осуществляли по общепринятому методу Неберта и Джелбойна [14] в модификации Денена и др. [15]. Спектрофлуориметрическое определение 3 -гидроксибенз(а) пирена в клеточном солюбилизате осуществляли на спектрофлуориметре Hitachi MPF-4. Интенсивность флуоресценции регистрировали при длине волны 522 нм, длина волны возбуждающего света 466 нм. Активность выражали в пмоль 3 -гидроксибенз (а) пирена• q^{-1}. мг клеточного белка ${ }^{-1}$.

Образование $\left[7{ }^{3} \mathrm{H}\right]$ окисленных производных ХС в МФ оценивали по включению [${ }^{3} \mathrm{H}$] СХС в полярные стероиды [5]. Клеточный монослой инкубировали в течение 18 ч в среде, которая содержала $\left[7{ }^{3} \mathrm{H}\right]$ СХС $\left(25 \cdot 10^{6}\right.$ имп•мин ${ }^{-1} \cdot$ мл), связанный с БСА [16]. Экстракцию липидов из МФ осуществляли описанным выше способом смесью гексана и изопропанола, содержащей 5 мкг/мл бутилированного гидрокситолуола. Opганический растворитель удаляли под вакуумом и к сухому остатку липидов добавляли 4 мл раствора, содержащего 1 M KOH в метанол: бензоле ($4: 1$; об/об) и 1 мл 10% пирогаллола в метаноле и бензоле ($4: 1$; об/об). Липиды омыляли 30 мин при температуре 80° в запаянных ампулах [5]. Неомыляемые стероиды разделяли методом тонкослойной хроматографии в системе толуол: этилацетат (4:6, об/об) [5]. Силикагель с участков пластинки, соответствующих R_{f} полярных стероидов $0,51-0,73$, переносили в виалы и подсчитывали радиоактивность. Содержание полярных [${ }^{3} \mathrm{H}$]стероидов выражали в процентах от общей радиоактивности в клетках и в пмоль•мг бел-κ^{-1}.

Определение активности АХАТ в МФ. Для повышения активности АХАТ в МФ за 12 ч до забоя мышам внутрибрюшинно вводили 1 мл эмульсии, содержащей 1%-ный БСА и 1 мг/мл СХС. Контрольным животным вводили 1%-ный раствор БСА на ФБС. Определение скорости включения [${ }^{14} \mathrm{C}$ ไолеата в $М Ф$ указанным выше методом показало увеличение эстерификации СХС в $9-12$ раз по сравнению с контрольными клетками. После инкубации перитонеальных МФ в пластиковых чашках в течение 2 ч клеточный монослой промывали ФБС для освобождения от лимфоцитов. Затем клетки ресуспендировали в ФБС, содержащий 2 мМ ЭДТА, собирали центрифугированием и гомогенизировали в $0,25 \mathrm{M}$ растворе сахарозы, содержащем 10 mM трис, $\mathrm{pH} 7,4,2 \mathrm{mM}$ дитиотреитол и 2 мМ ЭДТА. Общую мембранную фракцию МФ получали центрифугированием гомогената клеток при 105000 g 60 мин [17]. Активность АХАТ определяли в 0,25 мл инкубационной смеси, содержащей 100 мкг белка мембран МФ, 2 мМ дитиотреитола, 30 мкМ БСА, 10 мкМ [$\left.1-{ }^{14} \mathrm{C}\right]$ олеил-КоА в $0,1 \mathrm{M}$ фосфатном буфере, $\mathrm{pH} 7,4$ [17]. Ферментативную реакцию инициировали добавлением в инкубационную смесь 50 мкл 0,1 М фосфатного буфера, $\mathrm{pH} 7,4$, содержащего 5 нмоль [$1-{ }^{14} \mathrm{C}$]олеилКоА. Инкубацию проводили 15 мин при температуре 37° (линейная скорость реакции сохранялась в течение 20 мин). Экстракцию липидов осуществляли методом Фолча и др. [18] и разделение ЭХС проводили методом ТСХ [13], используя внутренний стандарт холестерололеата (150 мкг). Активность АХАТ выражали в пмоль эстерифицированного олеил-КоА $\cdot ч^{-1} \cdot$ мг $^{\text {б }}$ белка ${ }^{-1}$.

Радиоактивность подсчитывали в толуольном сцинтилляторе (4 г PPO, 0,3 г POPOP в 1 л толуола) в жидкостном сцинтилляционном счетчике Mark-3 («Tracor Analytic», CIIA) по программе STD 1, 2.

Содержание СХС в МФ определяли энзиматическим методом, адаптированным для биоптатов кожи [19]. К 4 мл экстракционной смеси липидов МФ добавляли 15 мкл 20%-ного раствора тритона X-100 в метаноле и органический растворитель удаляли под током азота. K сухому остатку добавляли 600 мкл энзиматического реактива («Boehringer Mannheim», ФРГ), тщательно размешивали, инкубировали 15 мин при температуре 37° и фотометрировали на спектрофотометре Gilson (Франция) при длине волны 500 нм.

Клеточный белок определяли после экстракции липидов из МФ методом Лоури [20]. Содержание белка МФ составляло $250-300$ мкг на чашку Петри.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Производное имидазола - кетоконазол - известен, как ингибитор разнообразных реакций, катализируемых монооксигеназами, и в том числе - стероидгидроксилирующими ферментными системами в клетках коры надпочечाников [21], половых желез [22], кишечника [5] и печени [6]. Ферменты, катализирующие гидроксилирование эндогенных субстратов в $М Ф$, не изучены. В литературе имеются лишь отдельные сооб-

Влияние кетоконазола на активность бенз(а)пиренгидроксилазы перитонеальных макрофагов мыши

№ экспе-римента	Концентрация кетоконазола в среде инкубации, MKM	Активность фермента в пмоль 3 -гидрокси- белка ${ }^{-1}$	No экспе-римента	Концентрация кетоконазола в среде инкубации, мкМ	Активность фермента в пмоль 3 -гидроксибенз(а) пирена $\cdot \mathbf{4}^{-1} \cdot \mathrm{mг}$ белқа-1
1	0	75,1	2	0	71,61
	1	55,33		1	61,84
	4	55,33		4	56,96
	7,5	52,08		7,5	56,31
	15	52,08		15	55,33
	30	39,06		30	39,06
	50	38,08		50	28,97

щения о наличии в перитонеальных макрофагах и моноцитах индуцибельной бенз (а) пиренгидроксилазы [23, 24].

Данные, впервые полученные в настоящей работе, демонстрируют способность кетоконазола в концентрациях от 10^{-6} до $50 \cdot 10^{-6}$ М ингибировать гидроксилирование бенз(а) пирена в культивируемых перитонеальных МФ мыши (табл. 1). При воздействии кетоконазола (50. $\cdot 10^{-6} \mathrm{M}$) активность бенз(а)пиренгидроксилазы снижается на $54,3 \%$.

Наряду с ингибированием бєнз(а)пиренгидроксилазы кетоконазол в эквивалентном диапазоне концентраций снижает включение [${ }^{14} \mathrm{C}$]олеата в ЭХС МФ, культивируемых в безлипидной среде (рис. 1, а) и среде, содержащей ацетил-ЛПНГІ (рис. 1, б). Инкубация МФ с ацетил-ЛПНП (50 мкг белка/мл) в течение 10 ч приводит к увеличению включения метки в ЭХС в 9-10 раз. Как видно из рис. 1 , б, присутствие кетоконазола в среде уже в концентрации $10^{-6} M$ заметно (на 26%) нивелирует повышение скорости эстерификации СХС в МФ, которая снижается с увеличением концентрации кетоконазола до $30 \cdot 10^{-6}$ и $50 \cdot 10^{-6} \mathrm{M}$ на 85 и $95,8 \%$ соответственно. При этом необходимо отметить, что кетоконазол не изменяет скорость включения $\left[{ }^{14} \mathrm{C}\right]$ олеата в ТГ и ФЛ (рис. 2), что свидетельствует об относительно избирательном воздействии препарата на эстерификацию. СХС в МФ.

Рис. 1. Влияние кетоконазола на включение [$\left.{ }^{14} \mathrm{C}\right]$ олеата в ЭХС макрофагов, культивируемых в безлипидной среде (а) и среде с ацетил-ЛПНП (50 мкг белка/мл) (б).

По оси ординат - нмоль эстерифицированного $\left[{ }^{14} \mathrm{C}\right]$ олеата \cdot мг клеточного белка ${ }^{-1}$

Рис. 2. Влияние кетоконазола на включение $\left[{ }^{14} \mathrm{C}\right.$]олеата в триглицериды (1) и фосфолипиды (2) макрофагов, культивируемых в течение 10 ч. По оси ординат - мкмоль эстерифицированного $\left[{ }^{14} \mathrm{C}\right]$ олеата \cdot мг клеточного белка ${ }^{-1}$

Снижение скорости эстерификации СХС при воздействии кетоконазола в МФ, культивируемых с ацетил-ЛПНП в течение 10 ч, сопровождалось повышением концентрации СХС в клетках (табл. 2). Увеличение содержания СХС в $М \Phi$ при концечтрации кетоконазола $50 \cdot 10^{-6} \mathrm{M}$ достигало 155% от контрольного уровня.

Представленные нами данные о снижении скорости эстерификации СХС и повышении уровня СХС в МФ хорошо согласуются с результатами экспериментов на эпителиальных клетках кишечника, полученными ранее Купта и.др. [5]. Причинами снижения скорсети эстерификации СХС при воздействии кетоконазола на клетки могут быть: повреждение мембран эндоплазматического ретикулума, приводящее к инактивации AXAT, прямое ингибирование AXAT и ингибирование ферментативных систем, катализирующих образование эндогенных активаторов AXAT. Литературные данные о том, что кетоконазол не вызывает нарушений структуры искусственных мембран [25], делают маловероятным первое предположение.

Для проверки второго предположения мы проводили сравнительное изучение влияния кетоконазола и известного ингибитора АХАТ - прогестерона [3] на скорость включения [${ }^{44} \mathrm{C}$]олеата в ЭХС МФ, культивируемых в присутствии ацетил-ЛПНП, 25 -гидроксиХС и их комбинации (табл. 3). В условиях инкубации ацетил-ЛПНП с МФ кетоконазол (15. $\cdot 10^{-6} \mathrm{M}$), подобно прогестерону ($15 \cdot 10^{-6} \mathrm{M}$), подавлял эстерификацию СХС, скорость которой снижалась под воздействием кетоконазола и прогестерона на 67,4 и $77,4 \%$ соответственно. Добавление в культуральную среду 25 -гидроксиХС, обладающего способностью стимулировать активность АХАТ [3], приводило к почти четырехкратному увеличению скорости эстерификации СХС в клетках, инкубированных с кетоконазо-

Таблица 2
Влияние кетоконазола на содержание свободного холестерина в макрофагах, инкубированных с ацетил-ЛПНП (40 мкг белка/мл) в течение 10 ч

Условия инкубации	Концентрация кетоко- назода $(10-6)$	Содержание CXC, мкг/мг белка	Статистическая достовер. ность величин, $n=$
Безлипидная среда	0	$22,0 \pm 0,8$	
Ацетил-ЛПНП	0	$27,3 \pm 1,3$	$p_{1,2}<0,05$
Ацетил-ЛПНП	0,25	30,6 $\pm 1,2$	$p_{2,3}<0,25$
Ацетил-лПНП	0,5	32,2 ± 1,4	$p_{2,4}<0,05$
Ацетил-ЛПНП	1,5	32,4 $\pm 2,2$	$p_{2,5}<0,05$
Ацетил-ЛПНП	7,5	33,7 ± 1,6	$p_{2,6}<0,001$
Ацетил-ЛПНП	15	33,8 $\pm 2,1$	$p_{2,7}<0,05$
Ацетил-ЛПНП	30	$36,1 \pm 2,8$	$p_{2,8}<0,05$
Ацетил-лПНП	50	$42,4 \pm 2,04$	$p_{2,9}<0,001$

Условия инкубации	Включение [44]олеата в ЭХС (нмоль эстерифицированного 	Статистическая достоверность величин, $n==4$
Безлипидная среда	$28 \pm 2,1$	
Ацетил-ЛПНП	187士5,3	$p_{1,2}<0,001$
25 -ГидроксиХС	$318 \pm 7,2$	$p_{1,3}<0,001$
Ацетил-лПНП +25 -гидроксиХС	$372 \pm 8,1$	$p_{2,4}<0,001$
Ацетил-ЛПНП+кетоконазол	$61 \pm 3,1$	$p_{2,5}<0,001$
Ацетил-ЛПНП+прогестерон	38,8士1,9	$p_{2,6}<0,001$
$25-$ Гидрокси $\mathrm{XC}+$ кетоконазол	$276+4,2$	$p_{3,7}<0,01$
25 -гидроксиХС + прогестерон	$42,3 \pm 5,1$	$p_{3,8}<0,001$
Ацетил-ЛПНП +25 -гидроксиХС + + кетоконазол	$224 \pm 4,6$	$p_{5,9}<0,001 ; p_{4,9}<0,002$
Ацетил-ЛПНП +25 -гидрокси ХС + + прогестерон	$29,7 \pm 3,2$	$p_{6,10}<0,1 ; p_{4,10}<0,001$

лом, но не оказывало влияния на включение метки в ЭХС МФ, инкубированных с прогестероном. В то же время активация скорости эстерификации СХС в $М Ф$, вызванная добавлением в культуральную среду 25 -гидроксиХС, почти полностью подавлялась прогестероном (15. $\cdot 10^{-6} \mathrm{M}$), но не кетоконазолом ($15 \cdot 10^{-6} \mathrm{M}$).

Представленная на рис. 3 зависимость скорости эстерификации СХС в МФ, культивируемых с 25 -гидроксиХС (4 мкг/мл), от концентрации кетоконазола, свидетельствует о том, что в условиях стимуляции активности АХАТ 25 -гидроксиХС кетоконазол оказывает слабое влияние на включение метки в ЭХС. Если при культивировании МФ с ацетил-ЛПНП кетоконазол снижает скорость эстерификации СХС на 70% уже в концентрации $15 \cdot 10^{-6} \mathrm{M}$ (рис. 1, б), то в присутствии 25 -гидроксиХС препарат в эквивалентной концентрации не оказывает существенного влияния на включение [${ }^{14} \mathrm{C}$]олеата в ЭХС $М Ф$ (рис. 3). Только при увеличении концентрации кетоконазола до $30 \cdot 10^{-6}$ и $50 \cdot 10^{-6} \mathrm{M}$ наблюдалось снижение скорости эстерификации СХС в МФ, культивируемых с 25 -гидроксиХС, на 30 и 48% соответственно.

Сравнительное исследование влияния кетоконазола и прогестерона на активность AXAT в мембранной фракции (105000 g , 60 мин) МФ (рис. 4) показало, что кетоконазол обладает более слабой способностью ингибировать активность фермента. Добавлєние прогестерона ($5 \cdot 10^{-6}$ $30 \cdot 10^{-6} \mathrm{M}$) в реакционную смесь резко снижает активность АХАТ (рис. 4 , кривая б), в то время как кетоконазол оказывает свое ингибирующее воздействие на фермент лишь в концентрациях $30 \cdot 10^{-6}-75$. $\cdot 10^{-6} \mathrm{M}$, снижая активность AXAT на $27,8-48 \%$ соответственно (рис. 4, кривая a).

Результаты экспериментов, взятые в совокупности, означают, что подавление стимулирующего влияния ацетил-ЛПНП на эстерификацию СХС в МФ кетоконазолом в относительно низких концентрациях $\left(1 \cdot 10^{-6}-30 \cdot 10^{-6} \mathrm{M}\right)$, вероятно, не связано с прямым ингибированием АХАТ в клетках. Для дальнейшего выявления механизма влияния кето-

Рис. 3

Рис. 3. Влияние кетоконазола на включение $\left[{ }^{14} \mathrm{C}\right.$ Јолеата в ЭХС макрофагов, культивируемых в присутствии 25 -гидроксиХС (4 мкг/мл). По оси ординат - нмоль эстерифицированного $\left[{ }^{14} \mathrm{C}\right.$]олеата $\cdot \mathrm{MF}$ клеточного белка-1

Рис. 4. Зависимость активности AXAT (фракция мембран макрофагов 105000 g 60 мин) от концентрации кетоконазола (a) и прогестерона (б). По оси ординат активность АХАТ в пмоль эстерифицированного $\left[{ }^{14} \mathrm{C}\right.$]олеил-КоА $\cdot ч^{-1} \cdot{ }^{-1}$ мг белка-1

коназола на эстерификацию СХС в МФ исследовали его возможное влияние на образование окисленных форм XC, которые могут быть потенциальными активаторами АХАТ. Клеточный монослой инкубировали в течение 18 ч в присутствии очищенного от примесей $\left[{ }^{3} \mathrm{H}\right] С Х С$, добавленного в среду инкубации в связанном с БСА виде. В табл. 4 представлены данные двух экспериментов, демонстрирующие влияние кетоконазола на величину радиоактивности неомыляемых полярных стероидов, обнаруженную в МФ при их инкубации с $\left[{ }^{3} \mathrm{H}\right] \mathrm{CXC}$. Полученные данные о дозозависимом снижении этого показателя при инкубации МФ с кетоконазолом ($1 \cdot 10^{-6}-30 \cdot 10^{-6} \mathrm{M}$) указывают на его возможность ингибировать образование окисленных продуктов ХС, являющихся потенциальными активаторами АХАТ.

Можно предположить следующую схему участия монооксигеназ в регуляции активности АХАТ в МФ:

Согласно этой схеме кетоконазол ($1 \cdot 10^{-6}-30 \cdot 10^{-6} \mathrm{M}$) ингибирует образование окисленных продуктов СХС (стадия 3), стимулирующих активность AXAT, и тем самым аннулирует повышение скорости эстерификации СХС в условиях транспорта ХС в $М Ф$ в составе ацетил-ЛПНП (стадии 1 и 2). Исходя из этих представлений, можно объяснить слабое влияние кетоконазола в указанных концентрациях на эстерификацию СХС при инкубации клеток с 25 -гидроксиХС, прямо активирующего AXAT (стадия 5). Прогестерон, прямо ингибирующий активность АХАТ (стадия 5), снижает эстерификацию СХС в МФ как в присутствии аце-тил-ЛПНП, так и -25 -гидроксиХС. Эта схема в принципе совпадает с предложенной ранее Куптом и др. [5]. Основное отличие заключается

Влияние кетоконазола на включение $\left[{ }^{3} \mathrm{H}\right] \mathrm{CXC}$ в полярные окисленные стероиды при инкубации макрофагов в течение 18 ч

$\begin{aligned} & \text { № экспе- } \\ & \text { римента } \end{aligned}$	$\begin{aligned} & \text { Концентрация } \\ & \text { кетоконазола } \\ & \text { в среде инкубации } \\ & \text { (мкМ) } \end{aligned}$	Содержание окисленных стероидов в МФ	
		\% от общей радиоактивности в неомыляеms:x стероидах	имоль стероидов. - мг белка-1
1	0	0,435	0,927
	5	0,43	0,927
	10	0,28	0,64
	20	0,145	0,34
	30	0,106	0,22
2	0	0,34	0,823
	5	0,28	0,683
	10	0,232	0,585
	20	0,187	0,39
	30	0,14	0,31

в том, что окисленные стероиды - предполагаємые продукты гидроксилирования СХС - рассматриваются, как потенциальные регуляторы активности АХАТ в МФ.

Суммируя полученные результаты, можно предположить, что активность мснооксигеназ в МФ играет важную роль в регуляции эстерификации СХС и ее ингибирование является одной из причин повышения уровня СХС в клетках при накоплении в них экзогенного XC.

СПИСОК ЛИТЕРАТУРЫ

1. Goldstein J. L., Brown M. S.//J. Lipid Res. 1984. V. 25. № 13. P. 1450-1461.
2. Brown M. S., Goldstein J. L.//Ann. Rev. Biochem. 1983. V. 52. P. 223-261.
3. Suckling K. E., Stange E. F.//J. Lipid Res. 1985. V. 26. № 6. P. 647-671.
4. Saucier S. E., Kandutsch A. A., Gayen A. K., Swahn D. K., Spencer T. A.//J. Biol. Chem. 1989. V. 264. № 12. P. 6863-6869.
5. Cupta A., Sexton R. C., Rudney H.//J. Biol. Chem. 1986. V. 261. № 18. P. 83488356.
6. Trzaskos J. M., Bowen W. D., Shafice A., Fischer R. T., Gaylor J. L.//J. Biol. Chem. 1984. V. 259. № 21. P. 13402-13412.
7. Kempen H. J., Van Son K., Cohen L. H., Griffoen M., Verboom H., Havekes L.// Biochem. Pharmacol. 1987. V. 36. № 8. P. 1245-1249.
8. Lindgren F. T., Jensen L. C., Hatch F. T.//Blood Lipids and Lipoproteins/Ed. Nelson G. J. N. Y.: Wiley Intersci., 1972. P. 181-274.
9. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S.//Proc. Natl. Acad. Sci. USA. 1979. V. 76. P. 333-337.
10. Peng S. K., Phyllips G. A., Xia G. Z., Morin R. J.//Atherosclerosis. 1987. V. 64. № 1. P. 1-6.
11. Lichtenstein A. H., Brecher P.//Biochim. et biophys. acta. 1983. V. 751. P. 340-348.
12. Brown M. S., Ho Y. K., Goldstein J. L.//J. Biol. Chem. 1980. V. 255. № 19. P. $9344-$ 9352.
13. Душкин М. И., Долгов А. В.//Вопр. мед. химии. 1986. № 3. С. 98-101.
14. Nebert D. W., Gellboin H. V.//J. Biol. Chem. 1968. V. 243. P. 6242-6249.
15. Dehnen W., Tomingas R., Roos J.//Anal. Biochem. 1973. V. 53. P. 373-383.
16. Werb Z., Cohn Z. A.//J. Exp. Med. 1972. V. 135. P. 21-44.
17. Mathur S. N., Field F. J., Megan M. B., Armstrong M. L.//Biochim. et biophys. acta. 1985. V. 834. № 1. P. 48-57.
18. Folch J., Lees M., Sloane G. H.//J. Biol. Chem. 1957. V. 226. № 1. P. 497-505.
19. Auidet A., De Graeve J., Thiers J. C., Valdiguil P., Bouisson H.//Clinical. Chem. 1983. V. 29. № 11. P. 2001-2002.
20. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.//J. Biol. Chem. 1951. V. 193. P. 265-275.
21. Loose D. S., Kan P. B., Hirst M. A., Marcus R. A., Feldman D. F.//J. Clin. Invest. 1983. V. 71. P. 1495-1499.
22. Kraemer F. B., Pont A.//Am. J. Med. 1986. V. 80. P. 616-622.
23. Bast R. C., Shears B. W., Rapp H. J., Gellboin H. V.//J. Natl. Cancer. Inst. 1973. V. 51. P. 675-678.
24. Ptashne K., Brothers L., Axline S. J., Conen S. N.//Proc. Soc. Exp. Biol. Med. 1974. V. 146. P. 585-589.
25. Brasseur R., Van den Bosch C., Van den Bossche H., Ruysschaert J. M.//Biochem. Pharmacol. 1983. V. 32. P. 2175-2178.

Институт терапии CO AH CCCP, Новосибирск

Поступила в редакцию
Институт клинической иммунологии
09.10.89

После доработки
СО АН СОСР, Новосибирск
21.01 .90

m. I. DUSHKIN, E. V. MANDRIKOVA, G. Yu. LYUBIMOV, N. N. VOL'SKY, A. V. DOLGOV

EFFECTS OF THE KETOCONAZOLE MONOOXYGENASE ACTIVITY INHIBITOR ON CHOLESTEROL ESTERIFICATION IN MOUSE PERITONEAL MACROPHAGES

Institute of Internal Medicine and Institute of Clinical Immunology, Siberian Branch of the USSR Academy of Medical Sciences, Novosibirsk

Key words: cholesterol esterification, macrophages, ketoconazole.
In order to determine the feasible role of monooxygenases in regulation of the macrophage acyl-CoA: cholesterol acyltransferase (ACAT) activity, the effects of ketoconazole on the activities of benz(a)pyrene hydroxylase and ACAT as well as on the [${ }^{14} \mathrm{C}$]oleate incorporation into cholesterol esters in cultured mouse peritoneal macrophages (MPM) were studied. Ketoconazole ($0.5-50 \mathrm{M}$) inhibited the benz (a) pyrene hydroxylase activity but increased the free cholesterol (FC) level in MPM cultured with an acetylated low density lipoprotein (acetyl-LDL). An addition of ketoconazole ($1-50 \mathrm{M}$) eliminated the increase in the rate of FC esterification after incubation of MPM with acetyl-LDL (but not with 25 -hydroxycholesterol). In contrast, progesterone, an ACAT activity inhibitor, used at $5-30 \mathrm{M}$ diminished the rate of FC esterification, when MPM were incubated with acetyl-LDL of 25 -hydroxycholesterol. Ketoconazole provoked a dosedependent decrease of the $\left[{ }^{3} \mathrm{H}\right] \mathrm{FC}$ incorporation into macrophage polar oxysteroids. The data obtained suggest that the ketoconazole ($1-30 \mathrm{M}$) effect on FC esterification in MPM cultured with acetyl-LDL is determined by its inhibiting monooxygenases, which produce oxidized forms of FC that are potential activators of ACAT.

